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Abstract—The single-crystal X-ray diffraction study of a terminally protected tetrapeptide Boc-Leu-Aib-Phe-Aib-OMe 1 (Aib:
�-amino-isobutyric acid) reveals that it forms a continuous hydrogen-bonded supramolecular helix starting from the double bend
conformation as an associating sub-unit. The scanning electron micrograph of the peptide 1 exhibits amyloid-like fibrils in the
solid state. © 2002 Elsevier Science Ltd. All rights reserved.

The creation of novel supramolecular architectures such
as the supramolecular helices and �-sheets is an emerg-
ing field of current research due to their many potential
applications in biological and material sciences.1

Supramolecular �-sheets are appropriately studied
using a �-strand forming peptide as a subunit. Many
research groups are deeply involved in designing
supramolecular peptide �-sheets to decipher the self-
assembly mechanism and pathway(s) of the �-sheet
aggregates which form amyloid fibrils2 with the aim of
developing diagnostics and therapeutics for amyloid
diseases. Several approaches have been pursued to con-
struct and study supramolecular helices based on non-
peptide systems. This is in contrast to supramolecular
�-sheets for which studies are concentrated primarily on
peptide systems.2,3 Most studies of peptide systems have
resulted in unimolecular helix formation (310 helix, �
helix or � helix) which is mainly stabilized through
intramolecular hydrogen bonding interactions.4

Supramolecular helical architecture can be formed by
intermolecular hydrogen bonds,5 and metal-ion com-
plexation.6 After its introduction by Lehn and co-work-
ers in 1987, metal-directed supramolecular
self-assembly of organo-ligand strands into double and
triple-helical arrays (helicates)7 has become one of the
popular routes for designing supramolecular helices.6

Higher order self-assembly of small poly-functional
organic compounds through intermolecular hydrogen
bonds and/or van der Waals’ interactions to form
double and triple helical architectures have been
reported in recent years.5 All previously reported
supramolecular helices have, however, been constructed
using either rigid organic templates or through metal
co-ordination. Much less attention has been paid to
supramolecular peptide helices, possibly due to the lack
of an appropriate model system. This is despite the fact
that supramolecular peptide-helices are particularly
important as they occur throughout biological systems
with different levels of self-organizations and self-asso-
ciations such as in collagen,8 which consists of polypep-
tide strands that are organized in triple helices
(tropocollagen) and subsequently self-assemble to form
fibrils of higher order collagen fiber. Again, besides
�-sheets, helices also have a role in the formation of
amyloid fibrils of human amylin and human calci-
tonin.9 So, it is worthwhile to study supramolecular
peptide helices. There is only one existing example of
the formation of a supramolecular peptide helix and
this occurred via the self-assembly of a short peptide
monomer.10 However, this previous study may be of
little general significance for supramolecular helix for-
mation because there is a lack of intermolecular hydro-
gen bonding along the axis of the supramolecular helix.

We have now established and report here the forma-
tion of a novel supramolecular helix from a termi-
nally blocked tetrapeptide11 Boc-Leu(1)-Aib(2)-Phe(3)-
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Figure 1. The structure of peptide 1 showing the atomic numbering scheme. Ellipsoids at 20% probability. Intramolecular
hydrogen bonds are shown as dotted lines.

Aib(4)-OMe 1 which self-associates, exploits the
hydrogen-bonding functionalities of the peptide bonds
in crystals12 and also provides an amyloid-like fibrillar
morphology in the solid state.

The crystalline molecular conformation of peptide 1 is
represented in Fig. 1. From Fig. 1 it is evident that
there are two adjacent intramolecular hydrogen bonds
(N4�H4···O11 and N7�H7···O14) resulting in a con-
secutive double bend (�-turn) conformation in the
solid state. The backbone torsion angles of peptide 1
(Table 1) reveal that both these turns in the double

bend are a Type I �-turn. The Aib(2) occupies the
i+2th position of first turn and i+1th position of the
second turn. The individual sub-units of this double
bend peptide are themselves regularly inter-linked via
multiple intermolecular hydrogen bonds and thereby
form a supramolecular helix along the crystallo-
graphic b direction (Fig. 2). Fig. 3 shows a stereo
space-filling model of the supramolecular helix formed
by peptide 1 in the crystalline form. The hydrogen
bonding parameters of peptide 1 are listed in Table 2.
There are two intermolecular hydrogen bonds,
N10�H10···O5 and N13�H13···O8, which are responsi-
ble for connecting individual molecules to create and
stabilize the helical self-assembly. Backbone torsions
(Table 1) of this peptide are mostly in the right-
handed helical region of the Ramachandran diagram
[except for the � value of Aib(4)]. This might be a
prerequisite for supramolecular helix formation.

A scanning electron microscope was used for the
morphological studies of peptide 1. The scanning elec-
tron micrograph (Fig. 4) of the dried fibrous materi-
als (grown slowly from a methanol/water mixture),
clearly shows the amyloid-like filament aggregates.9,13

Table 1. Selected backbone torsion angles (°) for peptide 1

O15�C14�N13�C12 −172.0(4) �0 C9�C8�N7�C6 174.1(4) �2

C8�N7�C6�C5−70.2(6) �1 −56.4(6) �3C14�N13�C12�C11
−16.9(7) �1N13�C12�C11�N10 N7�C6�C5�N4 −35.9(6) �3

C12�C11�N10�C9 177.1(5) �1 C6�C5�N4�C3 172.8(5) �3

C11�N10�C9�C8 −57.8(7) �2 C5�N4�C3�C1 51.3(6) �4

N10�C9�C8�N7 −21.3(6) �2 N4�C3�C1�O2 −135.7(5) �4
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Figure 2. The packing of peptide 1 showing the intermolecu-
lar hydrogen-bonded supramolecular helix along the b axis.
Hydrogen bonds are shown as dotted lines.

Figure 3. A cross-eye stereo, space-filling representation
showing a higher-ordered supramolecular helical assembly as
determined by X-ray crystal structure analysis. Nitrogen
atoms are blue, oxygen atoms are red and carbon atoms are
gray. Side chain of Lue(1), Phe(3) and hydrogen atoms are
omitted for clarity.

The self-assembly of peptide 1, occurring through mul-
tiple hydrogen bonds between peptide linkages of adja-
cent molecules results in the formation of a
supramolecular helical architecture. So, peptide 1 pro-
vides a unique conformational subunit of supramolecu-
lar peptide helices. Moreover, the hierarchical
self-assembly of peptide 1 results in amyloid-like fibril
formation in the solid state indicating the mimicry of
many naturally occurring macromolecules. Previous
results suggested that besides supramolecular sheets,
helices also have a role in the formation of amyloid
fibrils of human amylin9a and calcitonin.9b An investi-
gation of the pathway(s) and supramolecular aggregates
of amyloid fibril formation have a major role in thera-
peutics of the amyloid diseases. Hence, the atomic
model of peptide 1 significantly increases our under-
standing of amyloid fibrillogenesis.9,13
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Table 2. Hydrogen bonding parameters of peptide 1

H···A (A� ) D···A (A� ) D�H···A (°)D�H···A

2.21 2.942 143N4�H4···O11
1693.263N7�H7···O14 2.41

N10�H10···O5a 2.9912.20 152
2.30 1703.154N13�H13···O8a

a Symmetry equivalent 1−x, 0.5+y, −0.5−z.
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Figure 4. SEM image of the peptide 1 showing filamentous
fibrillar morphology in the solid state.
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